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Abstract

Sandwich panels with two-dimensional metal cores can be used to carry structural load as well as dissipate heat

through solid conduction and forced convection. This work attempts to uncover the nature of heat transfer in these

lightweight systems, with emphasis on the e�ects of varying cell morphologies and cell arrangements. The types of cell

shape and cell arrangement considered include regular hexagon, square with connectivity 4 or 3, and triangle with

connectivity 6 or 4. Two analytical models are developed: corrugated wall and e�ective medium. The former models the

cellular structure in detail whilst, the latter models the ¯uid saturated porous structure using volume averaging tech-

niques. The overall heat transfer coe�cient and pressure drop are obtained as functions of relative density, cell shape,

cell arrangement, ¯uid properties, and overall dimensions of the heat sink. A two-stage optimization is subsequently

carried out to identify cell morphologies that optimize the structural and heat transfer performance at speci®ed

pumping power and at lowest weight. In the ®rst stage, the overall heat transfer performance is optimized against

relative density. Regular hexagonal cells are found to provide the highest levels of heat dissipation. In the second stage,

a constraint on sti�ness is added. It is then found that, for panels with thin cores, triangular cells constitute the most

compact and yet sti� heat sink design; however, for high heat ¯ux scenarios, hexagonal cells outperform triangular and

square cells. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

For decades there has been considerable interest in

cellular solids made of an interconnected network of

solid struts or plates which form the edges and faces

of cells [1±3]. The simplest is a two-dimensional array of

polygons which pack to ®ll a plane area. Regular hex-

agonal honeycombs are used as cores of sandwich panels

in engineering structures where high sti�ness/strength at

minimum weight is essential. Recent advances in low-

costing processes have enabled micro-cell to be used as

compact heat exchangers where high surface area den-

sity is required [4,5]. An intriguing situation thus arises

where the light weight, high sti�ness and high surface

area density of honeycombs could be explored simul-

taneously. The idea is to substantially reduce the overall

weight/compactness of a structural system by using the

load-bearing cellular structure to simultaneously per-

form the thermal management function.

In this paper, to optimize the cooling and structural

load capacity of a two-dimensional cellular structure,

the performance of a model system (Fig. 1) will be

analyzed for various cell shapes and arrangements

(Fig. 2). Here, a compact multi-chip module is cooled

by forced convective ¯ow across a core sandwiched

between two heated skins (substrates). The scenario

envisioned in Fig. 1 can be straightforwardly modi®ed

to cover the re-entry of a space vehicle consisting of

sandwich shells, where the skin of the shell is actively

cooled by ¯uid passing through its core. The optimi-

zation is built upon a previous heat transfer model for

regular hexagonal cells subject to steady-state laminar

¯ow with constant thermal/physical properties of both

¯uid and metal [5].
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The cores in Fig. 1 are all arranged such that the

cooling ¯uid passes along the axial direction of the cells.

This arrangement di�ers from structural sandwich

construction wherein, the cell axis is perpendicular to

the skins. This design achieves large out-of-plane sti�-

ness and strength but, is not amenable to cooling. The

objective of this study is to discover cell shapes and

arrangements that simultaneously optimize the struc-

tural and heat transfer performance at minimum weight.

Two analytical models will be used. The micro-

mechanical heat transfer model developed in [5] for

regular hexagonal honeycombs is generalized to cover

other cells, and, for convenience, is termed here as the

`corrugated wall model'. The second approach uses an

`e�ective medium model', that treats the cellular metal

as a porous medium with e�ective thermal conductivity

that depends on the cell morphology. Local volume

averaging is utilized, subject to two-phase energy bal-

ance that addresses the local thermal non-equilibrium

between the solid and ¯uid phases [6±8]. Exact solutions

of the e�ective thermal conductivity are obtained for

each type of cell shape (the interstitial heat transfer

coe�cients already exist in the open literature). Iso-

thermal boundary conditions are assumed throughout,

although the optimization is equally applicable to situ-

ations, where iso¯ux is more appropriate; the results on

optimal cell shape and arrangement are not expected to

change for the two cases. The in-plane shear moduli

of the two-dimensional cellular solids are given in

Appendix A.

Nomenclature

Bi Biot number

ca proportional factor for surface area density

cf proportional factor for pressure drop

cH proportional factor for solid wall length

cn proportional factor for total number of slices

over width W

cp speci®c heat

ct proportional factor for cell wall thickness

cw proportional factor for cell wall ends

Dh hydraulic diameter

E Young's modulus

G in-plane shear modulus

h local heat transfer coe�cient
�h overall heat transfer coe�cient

H heat sink height

k thermal conductivity

I1 thermal performance

I2 thermomechanical performance index

l cell wall length

L heat sink length

L� characteristic length scale

_m mass ¯ow rate

M heat sink weight

n proportional factor for ®n attachments

Ns total number of slices over width W

Nu Nusselt number

Dp pressure drop

Pr Prandtl number

q heat ¯ux

Q total heat transfer rate

Re Reynolds number

t cell wall thickness

T temperature

DTm logarithmic mean temperature di�erence

u velocity

W heat sink width

Greek symbols

c shear strain

fi curve-®tting parameter �i � 1; 2; . . . ; t�
l shear viscosity

m kinematic viscosity

n local coordinates along cell walls

q relative density

s shear stress

X density

Subscripts

e exit of heat sink

f ¯uid

s solid

w substrate

0 inlet of heat sink

Fig. 1. Prototypical design of compact heat sink with two-di-

mensional metal honeycombs for cooling of multi-chip module

by forced convection.
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2. Preliminary considerations

2.1. The model

Consider the prototypical compact heat exchanger

design shown in Fig. 1, where the cooling is enhanced by

forced convection across a two-dimensional metal array

of thickness H sandwiched between two ¯at rectangular

plates of length L and width W. The substrates are as-

sumed to be thin and have large thermal conductivity so

that the through-thickness heat conduction may be ne-

glected. Both substrates are taken to be isothermal with

uniform temperature Tw. The module is thermally insu-

lated at the top (z � 0) and the bottom (z � H ) by

protective covers, and, without loss of generality, it is

assumed that the sandwich structure is capped and

thermally insulated at both ends (y � �W =2). Cooling

¯uid, with velocity u0, temperature T0 and pressure p0, is

forced into the cellular array at the inlet (x � 0). At the

outlet (x � L), the temperature is Te and the pressure pe.

The width of the channel, W, is assumed to be much

larger than the cell size so that both the thermal and

hydraulic ®elds are independent of the y-coordinate. Let

Xf ; mf ; lf and cp denote the ¯uid density, kinematic vis-

cosity, shear viscosity and speci®c heat at constant

pressure, respectively. The usual assumptions of steady-

state laminar ¯ow, and constant thermal/physical

properties of both ¯uid and solid are made.

2.2. Cell morphology

The cellular array morphology is characterized by the

cell size l, cell wall thickness t, relative density q (array

density X� divided by solid cell wall density Xs), and

stacking order (Fig. 2(a)). It is assumed here that all cells

have uniform wall thickness (although, cells having

double-wall thickness can also be analyzed, as demon-

strated in [5]). For simplicity, all cellular arrays are as-

sumed to be perfect, free of process-induced geometrical

imperfections. For the base cells considered (Fig. 2), it

has been established that the cell wall aspect ratio, t=l, is

dependent upon the relative density, q, as [1]

t=l � ct�1ÿ
�����������
1ÿ q

p
�; �1�

where ct � 0:577; 1:0; 1:732 for triangular, square and

hexagonal cells, respectively. Eq. (1) can be easily con-

verted to evaluate q for a given t=l. Similarly, the surface

area density aa for each cell shape is given by

aa � ca

�����������
1ÿ q
p

l
; �2�

where ca � 6:93; 4:0; 2:31 for triangular, square and

hexagonal cells, respectively. The corresponding hy-

draulic diameter, Dh, for each type of cell cross-section is

Dh � 4
1ÿ q

aa

� 4
l
�����������
1ÿ q
p

ca

: �3�

It had been expected that the triangular system would be

preferred on a heat dissipation basis, since it possesses

the largest surface area for speci®ed relative density and

cell size. Later, this assertion will be contradicted since

the performance will be judged on the basis of low-

est weight for a speci®ed thermal dispersion, Q, and

pressure drop, Dp.

2.3. E�ective thermal conductivity

The e�ective thermal conductivity of a two-dimen-

sional cellular array is, in general, a second-order tensor

[5,9,10]. The thermal conductivities, kz in the z-direction

normal to the substrate plane, and, ky in the transverse

direction, can be derived by analyzing heat conduction

Fig. 2. Two-dimensional honeycombs analyzed: (a) cell shape

and cell arrangement; (b) periodic cell (corrugated wall model);

(c) corrugated wall without ®n attachments.
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across the periodic cell shown in Fig. 2b. The solutions

expressed in terms of the solid conductivity, ks and rel-

ative density, are

kz � ckz qks � �1ÿ q�kf � ckz qks;

ky � cky qks � �1ÿ q�kf � cky qks;
�4�

where the ¯uid thermal conductivity kf � ks is assumed

(which is valid for most ¯uid-saturated metal honey-

combs), and ckz; cky are proportionality coe�cients ac-

counting for the tortuous shape of the cell walls. For

metal honeycombs operating at temperatures below

500°C, the contribution of thermal radiation to kz and ky

is negligible [5,10]. Values for tortuosity coe�cients, ckz

and cky , for the cells depicted in Fig. 2a are reported in

Table 1. Note that they are bounded between 1/3 and 1/2

for all ®ve geometries, consistent with results obtained

by others [10,11]. It is noted that, due to the regularity of

the structures, the lower and upper bounds coincide [11],

such that the exact solutions are identical to those of

Table 1.

2.4. Local heat transfer coe�cient

For forced convective ¯ow across a given cell, let h

denote the local heat transfer coe�cient averaged over

the perimeter and let Nu � hDh=kf denote the associated

Nusselt number. For each duct shape, the dimensionless

Nu is a function of the Reynolds number, Re � uf Dh=mf ,

and the Prandtl number, Pr � cplf=kf . When Re < 2000,

the ¯ow is laminar in the duct. For typical cellular arrays

having cell sizes �1 mm, this is a valid assumption under

most circumstances. Laminar duct ¯ow becomes fully

developed after a distance, x � 3Dh, whereupon Nu be-

comes independent of the Reynolds number. For this

study, the variation of Nu within the entrance length has

been ignored, since for practical purposes: L� Dh. Ac-

cordingly, by invoking Eq. (3), the heat transfer coef-

®cient h becomes

h � 0:25ca

Nukf

l
�����������
1ÿ q
p : �5�

Values of Nu determined from numerical experimenta-

tion [9] for a uniform base temperature are independent

of Pr, with Nu � 2:35; 2:98; 3:35 for triangular, square

and hexagonal cells, respectively. The in¯uence of cell

cross-sectional shape on Nu is relatively small.

2.5. Pressure drop

For laminar ¯ow, the pressure drop across the cel-

lular array derived from the Hagen±Poiseuille solution

of the momentum equation is given by the free stream

velocity and the cell morphology by

Dp
L
� cf

4L
DhRe Dh

1

2
Xf u2

�

� �
� cf c2

a

8

Xfmf u0

�1ÿ q�2l2
; �6�

where Re Dh
� u�Dh=mf is the Reynolds number, and

u� � u0=�1ÿ q� is the ¯uid velocity averaged over the

channel. The frictional coe�cient is, cf � 14:17; 133;
15:07 for square, triangular and hexagonal cells, re-

spectively [9,12]. While the e�ect of cell shape on cf is

small, the pressure drop is signi®cantly a�ected by shape

because, from (6): Dp � c2
a (see Eq. (2)). Thus, while

increasing the surface area density leads to an increase in

the overall heat dissipation, there is an even larger in-

crease in the pressure drop. Minimizing the pressure

drop (6) while achieving a speci®ed overall heat removal

will be discussed in detail below.

2.6. In-plane shear modulus

As cores for load-bearing sandwich panels, the in-

plane shear modulus G is of interest [1,14]. For example,

under concentrated load, the panel de¯ects as a result of

combined bending and shear deformation. The bending

sti�ness, SB, at length Lp, in a direction normal to the cell

axis, is [1,13]

1

SB

� 2L3
p

B1EptpWH 2
� Lp

B2WHG
; �7�

where Ep is the Young's modulus of the face sheets, tp

the sheet thickness and Bi (i � 1; 2) are the bending

coe�cients that depend on the loading con®guration

[14]. In deriving (7), it has been assumed that tp � H
such that thin facing sandwich beam theory applies

(shear deformation due entirely to the cellular array

core).

For the cellular arrays shown in Fig. 2a, the in-plane

shear moduli at small q (t� l) can be derived by ex-

tending the honeycomb model of Gibson and Ashby [1]

Table 1

Proportionality coe�cients for ®ve types of cell shape and cell arrangement

Cell type ca cky ckz cH n Nu

Triangle-4 6.93 0.5 0.33 1.732 2.0 3.0

Triangle-6 6.93 0.5 0.5 1.155 3.0 3.0

Square-3 4.0 0.5 0.4 1.5 1.778 3.614

Square-4 4.0 0.5 0.5 1.0 2.0 3.614

Hexagon 2.31 0.5 0.5 1.155 1.5 4.021
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(Appendix). The in-plane shear modulus of an array of

square cells with connectivity of 4 is

G=Es � �1=2��t=l�3; �8a�

where Es is the Young's modulus of the cell wall ma-

terial. For square cells with connectivity of 3,

G=Es � �4=5��t=l�3: �8b�

For regular hexagonal cells,

G=Es � �1=
���
3
p
��t=l�3: �8c�

For triangular cells with connectivity of 4,

G=Es � 89�t=l�3; �8d�

and for triangular cells with connectivity of 6,

G=Es � �
���
3
p

=4��t=l�: �8e�

Among the arrays shown in Fig. 2a, the triangular

structure with connectivity 6 has the greatest sti�ness (at

a speci®ed relative density). It also has in-plane isotropy,

whereas square arrays are highly anisotropic and hexa-

gons are extremely compliant [1]. Triangular systems

with connectivity 6 deform by cell-wall stretching under

in-plane shear. All other cellular arrays of Fig. 2a de-

form by cell-wall bending. This di�erence in deforma-

tion mechanisms is re¯ected in the linear dependence of

G upon q for the triangular cells, and by the non-linear

power law dependence of G upon q for all other struc-

tures.

3. Corrugated wall model

3.1. Heat loss from a single-corrugated wall with ®ns

The problem shown in Fig. 1 is signi®cantly simpli-

®ed if the heat sink is divided into periodic slices of equal

width, as illustrated in Fig. 2b for each base cell geom-

etry. It is apparent from Fig. 2b that each slice consists

of a corrugated wall (Fig. 2(c)), with or without ®n at-

tachments. Therefore, following [5], a two-step approach

is adopted to solve for the thermal ®elds. In the ®rst step,

the analysis of heat transfer is performed for the cor-

rugated walls by excluding the e�ects of ®ns. Then, the

contribution from the ®ns is added, where appropriate.

In the absence of ®n attachments, the governing

equation of temperature T along the length of a single-

corrugated wall (Fig. 3) is

d2T

dn2
ÿ 2h

kst
T� ÿ Tf� � 0; �9�

where Tf�x� is the mean ¯uid temperature at location x

(to be determined next) and n is the local coordinate

along the wall with the origin n � 0 coinciding with

z � 0, and n � cHH at z � H . The values of the tortuous

coe�cient cH are given in Table 1. The e�ects of radia-

tion at the wall surface can be shown to be small, and

hence is neglected in the derivation of Eq. (9). Subjected

to the boundary conditions that T � Tw at n � 0 and at

n � cHH , Eq. (9) can be solved to arrive at

T �x; n� � Tf�x�

� Tw� ÿ Tf�x��
cosh

����������
Bi=2

p �cHH ÿ 2n�=t
h i

cosh� ����������
Bi=2

p
cHH=t� ;

�10�
where Bi � ht=ks is the Biot number. It is expected that

Bi� 1 for typical cellular metal arrays with t � 10ÿ1

mm.

The heat lost to the cooling medium per unit length

of the corrugated wall is

q1 � ÿ 2kst
dT
dn

�
n�0

� 2
�������
2Bi
p

ks�Tw ÿ Tf� tanh
����������
Bi=2

p
cHH=t

� �
: �11�

The contribution of heat loss from ®n attachments for

regular hexagonal cells has been analyzed in [5] using

both exact and approximate solutions. It was found that

the approximate solution for the total heat loss with ®n

attachments, q � 1:5q1, closely describes the exact (but

much more complicated) solution. Here, the same

strategy as that used in [5] is extended to cover other

types of base cell. The approximate solution for the total

heat loss from a single-corrugated wall and its ®n at-

tachments can be written as

q � nq1

� 2n
�������
2Bi
p

ks�Tw ÿ Tf� tanh
����������
Bi=2

p
cHH=t

� �
; �12�

where n is a correction coe�cient accounting for the

contribution of ®ns. For each base cell, n is reported in

Table 1.

Fig. 3. A single-corrugated wall (without ®n attachments), with

local coordinate and isothermal boundary conditions.
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3.2. Mean ¯uid temperature

Following [5], a simple model is used to solve for the

steady-state distribution of the average ¯uid tempera-

ture inside the heat sink, with the assumption that the

heat transfer between the ¯uid and solid cell wall is

governed by a constant heat transfer coe�cient obtained

from laminar duct ¯ow, Eq. (5). As is customary in the

heat transfer analysis of a duct, a mean temperature

Tf�x� of the ¯uid is de®ned over the cross-section of the

cellular array (at location x� ®xed), such that for the

control volume of length dx:

_mcp Tf�x� � dx� ÿ Tf�x�� � Nsq�x� � qw�x�; �13�

where _m � Xf v0HW is the mass ¯ow rate at the entrance

to the heat sink, Ns � cnW =l is the total number of slices

over width W, and

qw�x� � 2h�W ÿ Nscwt��Tw ÿ Tf�x��; �14�

is the heat ¯ux into the ¯uid from both face sheets. Here,

cn � 2=3 for hexagonal cells and cn � 1 for all other base

cells: whereas cw � 1 for square cells and cw �
���
3
p

=2 for

all other base cells. Notice that Tf calculated from Eq.

(14) is the average (local) temperature that satis®es the

First Law of Thermodynamics.

Combination of Eqs. (12)±(14) gives rise to an ordi-

nary di�erential equation for the mean ¯uid temperature

Tf�x�. The solution is

Tf�x� � Tw ÿ �Tw ÿ T0� exp�ÿx=L��; �15�

where L� is the characteristic length scale given by

L� � Xf cpu0H
2h

1

"
ÿ cncwt

l

� cnnt
l

�����
2

Bi

r
tanh

����������
Bi=2

p
cHH=t

� �#ÿ1

: �16�

From Eq. (15), the average ¯uid temperature inside the

heat sink is obtained as

�Tf � T0 � �Tw ÿ T0� 1

�
ÿ L�

L
1� ÿ exp� ÿ L=L���

�
: �17�

Notice that in the limit L=L� ! 1, �Tf ! Tw as expected.

3.3. Overall heat transfer coe�cient

The total heat dissipated from the sandwich structure

is Q � _mcp�Te ÿ T0� which, by noting that Te � Tf�L�,
becomes

Q � Xf u0cpHW �Tw ÿ T0� 1f ÿ exp� ÿ L=L��g: �18�
The overall heat transfer coe�cient, �h, of the heat sink is

de®ned as [5,10]

�h � Q
2LW DTm

; �19�

where DTm is the logarithmic mean temperature di�er-

ence:

DTm � �Tw ÿ T0� ÿ �Tw ÿ Te�
ln �Tw ÿ T0�=�Tw ÿ Te�� � : �20�

It can be readily veri®ed that DTm � Tw ÿ �Tf . The re-

sulting expression for �h is

�h
h
� 1ÿ cncwt

l
� cnnt

l

�����
2

Bi

r
tanh

����������
Bi=2

p
cHH=t

� �
; �21a�

or, equivalently,

�h � 0:25
caNukf

l
�����������
1ÿ q
p 1

24 ÿ cncwt
l

� 2cnn

�����������������������
2kst

�����������
1ÿ q
p

caNukf l

s
tanh

cHH
2l

�����������������������
caNukf l

2kst
�����������
1ÿ q
p

s !35:
�21b�

4. E�ective medium model

In this model, the governing equations for the

velocity and temperature ®elds in the ¯uid-saturated

porous medium are derived by using the volume-aver-

aging method [6±8]. The properties of each phase are

averaged separately within a representative unit element

(i.e., individual cells) and correlated with bulk properties

of the pure phases. The representative unit volume has

a surface area per unit volume, aa, local heat transfer

coe�cient, h, and e�ective thermal conductivity, kz. The

energy equation governing the temperature in the solid

phase, T �x; z� after reaching steady-state may then be

written as

d2T
dz2
ÿ aa

h
kz
�T �x; z� ÿ Tf�x�� � 0; �22�

where it has been assumed that most of the heat ¯ux

through the solid is normal to the ¯uid ¯ow (i.e.,

oT=ozj j � oT=oxj j). Upon de®ning v2 � haa=kz, the cell

wall temperatures in the heat sink shown in Fig. 1 are

determined as (T < Tf )

T �x; z� � Tf�x� � Tw� ÿ Tf�x�� cosh v �H=2ÿ z�� �
cosh�vH=2� : �23�

Local energy balance on the ¯uid phase for a represen-

tative control volume, height H, gives

q � Xf cpu0HW
dTf

dx
� haaHW �Tw ÿ Tf�g; �24�
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where g � tanh�vH=2�=�vH=2� denotes the e�ective ®n

e�ciency.

When the ¯uid is everywhere cooler than the solid,

the mean ¯uid temperature is the same as Eq. (15), but

with the characteristic length scale, L�, given by

L� � Xf cpu0

haag
: �25�

Following the same procedure that leads to Eqs. (21a)

and (21b) in the corrugated wall model, the overall heat

transfer coe�cient for the e�ective medium model is

obtained as

�h � ca

2l

����������������������
Nukf ckz ksq

p
tanh

caH
4l

������������
Nukf

ckz ksq

s !
: �26�

5. Design optimizations

The intent of this section is mainly two fold: (i) to

compare the predictions from the two analytical models,

and (ii) to de®ne non-dimensional indices for heat dis-

sipation, pressure drop and sti�ness that facilitate se-

lection of cell morphologies and heat sink dimensions

which maximise heat dissipation (and sti�ness) at

speci®ed pressure drop. Such optimizations are subject

to two important provisos. The ®rst is that the mor-

phological representation developed in Section 2 applies

over the ranges of cell size and relative density embraced

by the included formulae. The second is that the ¯ow

remains laminar and fully developed, both thermody-

namically and thermally, such that the local heat

transfer can be represented by Eq. (5) and the pressure

drop by Eq. (6).

5.1. Corrugated wall model versus e�ective medium model

The heat transfer performance of a heat sink is

commonly gauged by the ratio of total heat transfer rate

to the pumping power needed to force the ¯uid through:

the higher this ratio, the better the heat sink per-

formance. A non-dimensional scaling index I1 is thence

introduced as

I1 � c1
�h=Dp; �27�

where c1 � mfXf u0=ks. For the corrugated wall model, it

can be shown that

I1 � 2Nukf�1ÿ q�3=2l
cf cakf L

1

8<: ÿ cncwct�1ÿ
�����������
1ÿ q

p
�

� cnn

����������������������������������������������������
8ksct�1ÿ

�����������
1ÿ q
p � �����������1ÿ q

p
Nucakf

s

tanh
cHH

l

�����������������������������������
Nucakf

�����������
1ÿ q
p

8ksct�1ÿ
�����������
1ÿ q
p

s !9=;: �28a�

Similarly, for the e�ective medium model,

I1 � 2l�1ÿ q�2
cf cakf L

����������������������
Nukf ckzksq

p
tanh

caH
2l

������������
Nukf

ckzksq

s !( )
:

�28b�
Both the corrugated wall model and the e�ective me-

dium model are employed below to investigate the e�ects

of cell morphology on heat transfer e�ciency. For the

base cells of Fig. 2, the relevant proportionality coef-

®cients are listed in Table 1. For regular hexagonal

structures, the predicted heat transfer e�ciency I1

against q from both models are shown in Fig. 4 for

ks � 200 W/m K (typical of aluminum), kf � 0:026

W/m K (air at 300 K), l � 1 mm, H=l � 10, and

L=l � 100. Although the two models exhibit the same

general trend, the predicted I1 from the corrugated wall

model is consistently higher than that from the e�ective

medium model. The discrepancy is mainly due to the

extra heat dissipation from the plate surfaces and ®n

attachments that are ignored in the e�ective medium

model. In the corrugated wall model, these are sepa-

rately accounted for by the 1ÿ cncwct�1ÿ
�����������
1ÿ q
p � term

and the coe�cient n�> 1� in Eq. (28a). The e�ect of heat

transfer across the plate surfaces on the overall heat

transfer coe�cient is small, as can be seen from Fig. 4,

where the prediction of Eq. (28a) without the

1ÿ cncwct�1ÿ
�����������
1ÿ q
p � term is plotted. However, if this

term is retained and n � 1 is assumed (heat transfer due

to ®n attachments ignored), the knock down e�ect on �h
and hence on I1 is quite signi®cant (Fig. 4). If both e�ects

are ignored, then the predicted I1 from the corrugated

wall model correlate well with those predicted from the

Fig. 4. Thermal performance index I1 plotted as a function of

relative density for hexagonal structure. The parameters used

are l� 1 mm, H=l � 10, L=l � 100, ks � 200 W/mK and

kf � 0:026 W/m K.
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e�ective medium model. Unless otherwise stated, all the

results presented below are calculated from the corru-

gated wall model.

5.2. Optimal cell morphology for maximum thermal

performance

The predicted heat transfer e�ciency I1 against q
from the corrugated wall model are shown in Fig. 5 for

each base cell (the parameters are identical to those se-

lected for Fig. 4). The results illustrate that, amongst the

®ve di�erent cellular structures considered, the regular

hexagonal system produces the best heat transfer ef-

®ciency, at speci®ed relative density, cell size and heat

sink dimensions. The triangular cells are the least ef-

®cient. Even though the triangular system has the largest

surface area density at speci®ed relative density and cell

size and hence, the largest heat dissipation capability

(�h � ca, Eq. (21b) or (26)), it has an even larger pressure

drop (Dp � c2
a, Eq. (6)). Accordingly, the heat transfer

e�ciency index I1 is inversely proportional to the shape

factor: ca � 2:31; 4:0; 6:93 for hexagonal, square and

triangular cells, respectively. This can be seen explicitly

from either Eq. (28a) or (28b).

For each cell and for the parameters listed afore, the

thermal performance index I1 increases steeply with in-

creasing q, reaches a maximum, Imax
1 , and then decreases.

The relative density, qopt, at Imax
1 is dependent upon H=l

and other parameters to be speci®ed below. This general

trend remains unchanged if parameters other than those

used for plotting Figs. 4 and 5 are used.

5.3. Optimal systems for thermal performance

The maximum values of the index, Imax
1 , and the

corresponding relative densities, qopt, are plotted in Fig. 6

as functions of H=l. The parameters are identical to

those selected for plotting Fig. 4. The heat dissipation

capacity increases rapidly as H=l increases up to about

20. Thereafter, it reaches an asymptotic limit. This be-

havior arises because, when H=l is su�ciently large (at

speci®ed Tw), most of the heat has already been dissi-

pated before it reaches the center of the core (z � H=2 in

Fig. 1). It is therefore unnecessary to unduly increase the

heat sink height in order to increase heat dissipation:

just as it is no longer necessary to increase the heat sink

length beyond L � 3L� when the ¯uid temperature Tf �L�
has already approached the target temperature Tw. The

asymptotic values are quite sensitive to the cell topology,

with the largest values arising for the hexagons. One

implication is that (for a speci®ed pressure drop), there

is a maximum amount of heat that can be dissipated by

each cell topology. Consequently, in high heat ¯ux situ-

ations, only hexagons can satisfy the thermal require-

ments.

The optimal relative density qopt increases upon in-

creasing H=l (Fig. 6b). Moreover, when Imax
1 reaches its

asymptotic level, this density is independent of the base

cell qopt � 0:24. This relatively large qopt indicates that

heat transfer is maximized when convective heat transfer

Fig. 5. Thermal performance index I1 plotted as a function of

relative density for triangular, square and hexagonal structures.

The corrugated wall model is used for the plotting, with l � 1

mm, H=l � 10, L=l � 100, ks � 200 W/mK and kf � 0:026

W/m K.

Fig. 6. (a) The maximum thermal performance index Imax
1 ; (b)

the corresponding optimal relative density qopt plotted as a

function of normalized heat sink height H=l. The corrugated

wall model is used for the plotting, with l� 1 mm, L=l � 100,

ks � 200 W/m K and kf � 0:026 W/m K.
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interacts favorably with heat conduction along cell

walls. To facilitate subsequent analysis, the dependen-

cies of Imax
1 and qopt on H=l have been approximated by:

Imax
1 � f1 tanh�f2H=l�; �29a�

qopt � 0:24 tanh�f3H=l�; �29b�

where f1 � �12:88; 4:598; 4:096; 1:075; 0:724� � 10ÿ7, f2

� 0:045; 0:043; 0:07; 0:07; 0:125, and f3 � 0:032; 0:035;
0:048; 0:065; 0:09 for hexagonal, four-connected square,

three-connected square, six-connected triangle and four-

connected triangle, respectively.

These results may be used to guide the design of a

lightweight compact heat sink. For this purpose, the

optimal thickness of the heat exchanger is ®rst chosen

from Fig. 6a to provide the thinnest sandwich structure

that achieves the required thermal performance index

Imax
1 . Then, the optimal relative density of the cellular

core is selected from Fig. 6b. Thereupon, the weight of

the heat sink ( �M � qoptXsHLW ), is given by:

�M
XsLWl

� qopt

H
l

� 0:24

f2

tanh
f3

f2

tanhÿ1 Imax
1

f1

� �� �
� tanhÿ1 Imax

1

f1

� �
: �30�

Fig. 7 plots the normalized weight ( �M=XsLWl) against

Imax
1 . This plot rea�rms that high levels of heat dissi-

pation (at speci®ed pumping power) are inaccessible for

triangular and square cells. Speci®cally, at the limit

qopt � 0:24, hexagonal cells dissipate about three times

more heat than square cells, and about 12 times that

achievable with triangular cells. Moreover, hexagonal

cells invariably provide speci®ed levels of heat dissipa-

tion at lowest weight.

5.4. Optimal systems for thermomechanical performance

It would be of great interest to ®nd the lightest

structure that achieves a speci®ed heat dissipation, while

sustaining a de®ned structural load. Such an optimiza-

tion is beyond the scope of this article. Instead a simple,

though arbitrary, metric is chosen that allows some as-

pects of the interplay to be explored. The basis for the

loading parameter is the recognition that core shear has

a major in¯uence on the minimum weights realized

in practice [14,15]. Accordingly, the non-dimensional

in-plane shear sti�ness, G=Es, is taken as a relevant

measure of the structural utility. The convolution of

load bearing with heat dissipation is assumed to be re-

¯ected in the product of this shear sti�ness with the heat

dissipation/pressure drop index, I1, resulting in a new

dimensionless index:

I2 � �G=Es�I1 � c1

G
Es

�h
Dp

: �31�

This index has an implicit dependence on q, through

both G=Es and I1.

For assessment of lowest overall weight, it is noted

that sandwich panels optimized for load bearing have

explicit requirements on core thickness [15]. Accord-

ingly, a peak value of the index I2, denoted Î2, is sought

for speci®ed H=l:

Î2 � �G=Es�I1jH=l: �32�

The trend in Î2 with H=l is plotted in Fig. 8. The results

can be conveniently expressed as

Î2 � f4 tanh�f5H=l�� �a; �33�

where the coe�cients a � 4:3; 2:2; 3:5; 3:9; 3:6; f4 �
�8:15; 3:45; 2:15; 0:49; 0:69� �10ÿ9 and f5 � 0:034; 0:07;
0:09; 0:036; 0:033 for hexagonal, six-connected triangu-

lar, four-connected triangular, four-connected square

and three- connected square cells, respectively. In this

plot, each H=l has an implicit relative density, qopt

(Fig. 6). The implication of Fig 8 is that for designs

requiring thin cores (small H=l < 25), panels with

six-connected triangular cells outperform all other

structures, because of their superior load-bearing char-

acteristics. The situation changes at large H=l�> 25�,
where the hexagonal cells outperform all others because

of their superior thermal performance (Fig. 8). These

characteristics reveal that interesting nuances are to be

Fig. 7. Normalized heat sink minimum weight �M=XsLWl plot-

ted as a function of the maximum thermal performance index

Imax
1 . The heat sink is made of 2D cellular systems having op-

timal relative densities, qopt. The corrugated wall model is used,

with l� 1 mm, L=l � 100, ks � 200 W/m K and kf � 0:026

W/m K.
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expected when joint optimization for both structural

loads and heat dissipation are attempted.

Since qopt is implicit in Fig 8, the structural weight

exhibits similar characteristics, as illustrated in Fig 9,

where the normalized weight, �M=XsLWl, has been plot-

ted against Î2. Note that, to a good approximation, Fig. 9

can be represented by

�M
XsLWl

� 0:24

f5

tanh
f3

f5

tanhÿ1 Î2

f4

 !1=a
24 35

� tanhÿ1 Î2

f4

 !1=a

: �34�

It is to be recalled that, in both Eq. (34) and in Fig. 9,

the core thickness, H=l, is implicit, through Eq. (33).

6. Conclusion

Two analytical models are used to describe the

characteristics of heat transfer in two-dimensional

structures with forced convection. The corrugated wall

approach models the detailed cellular structure, whilst

the e�ective medium model uses volume averaging

techniques. Both models are able to predict the thermal

®elds as functions of cell morphology and ¯ow param-

eters: although the e�ective medium model somewhat

underestimates the heat dissipation due to the assump-

tion that the conduction of heat occurs predominantly

normal to the convective ¯ow. The solutions have been

applied to a variety of cell structures, including square

cells with connectivity of either three or four, triangular

cells with connectivity of either six or four, and regular

hexagonal cells.

Two dimensionless scaling indices are introduced to

help identify the optimal cell shape and arrangement.

The ®rst is based on the ratio of overall heat transfer

coe�cient to pumping power, and the other combines

thermal performance with shear sti�ness. Hexagonal

structures are found to provide the best heat transfer

e�ciency, whereas triangular systems are the least ef-

®cient (even though the latter have the largest surface

area density). For a speci®ed relative density, cell size

and heat sink dimensions, the triangular material may

dissipate, say, twice as much heat as the hexagonal, but

the pumping power needed to achieve this quadruples.

Furthermore, for a speci®ed pumping power, there is a

maximum amount of heat that can be dissipated by each

cell topology: such that the highest levels of heat dissi-

pation with hexagonal cells are not accessible for trian-

gular and square cells. For all cell topologies, the relative

density corresponding at the maximum heat dissipation

is about 0.24, indicating the importance of heat con-

duction along cell walls.

If the heat sink is required to carry structural load as

well as dissipate heat, then for small core thickness/low

heat ¯ux scenarios the six-connected triangular cells

provide the best overall performance, because their high

sti�ness compensates more than for their inferior heat

dissipation capability. Conversely, in high heat ¯ux sit-

uations where relatively thick cores are required, hex-

agonal cells have the best overall performance.
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Appendix A. Calculation of in-plane shear modulus

The in-plane shear sti�ness of a periodic two-di-

mensional cellular structure with regular hexagonal

cells has been studied by Gibson and Ashby [1], and is

given in Eq. (8e). For cellular structures having other

base cells, their in-plane shear sti�ness are derived

below.

A.1. Square with connectivity of 4

Consider the deformation of the unit cell under shear

stress s as shown in Fig. 10(a). By symmetry, there is no

relative motion of the points A, C and O. The shearing

de¯ection of the structure is due to the bending of beams

BO and DO and their rotation about the point O. Since

all the joints rotate through an angle /, by using the

standard result for beam de¯ection d � Ml2=6EsI with

I � t3=12, one has

/ � s
Es

l
t

� �3

: �A1�

The shearing defection of point B with respect to O is

�u � sl
3ESI

l
2

� �3

� /
l
2
� sl4

Est3
: �A2�

The shear strain, c, is given by

c � 2�u
l
� 2s

Es

l
t

� �3

; �A3�

from which the shear modulus G � s=c is obtained as

G
Es

� 1

2

t
l

� �3

: �A4�

A.2. Square with connectivity of 3

Consider the deformation of the unit cell under shear

stress s as shown in Fig. 10b. By symmetry, there is no

relative motion of the points A, C, E, F and O. The

shearing de¯ection of the structure is due to the bending

of beams BE and DF and their rotation about the points

F and E, respectively. All the joints rotate through an

angle /. Then, from the standard beam bending results,

/ � �Ml=2�=24EsI, we obtain

/ � s
4Es

l
t

� �3

: �A5�

The shearing defection of point B with respect to E is

�u � sl
3EsI

l
2

� �3

� /
l
2
� 5sl4

8Est3
: �A6�

The shear strain, c, is given by

c � 2us

l
� 5s

4Es

l
t

� �3

; �A7�

from which the shear modulus G � s=c is obtained as

G
Es

� 4

5

t
l

� �3

: �A8�

Fig. 10. Unit cell of square honeycomb with connectivity of (a) 4, (b) 3, subject to in-plane shear.
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A.3. Triangle with connectivity of 6

The in-plane Young's modulus of the triangular

system with connectivity of 6 is [1,12]:

E
Es

� 2���
3
p t

l

� �
: �A9�

Since this structure is isotropic, the corresponding in-

plane shear modulus can be directly calculated from

G � E=2�1� m�, as

G
Es

�
���
3
p

4

t
l

� �
; �A10�

where m � 1=3 has been used [1,12].

A.4. Triangle with connectivity of 4

For a triangular system with connectivity of 4, it is

di�cult to calculate its in-plane shear modulus using

the above simple beam theory and the extensions. The

method of ®nite elements is used instead. Details of

the ®nite element method as applied to two-dimen-

sional cellular structures can be found in [3,10]. In the

®nite element model, a structure of size Lx � Ly is

taken as the unit cell of an in®nite triangular system; a

uniform cell-wall thickness t across the entire structure

is assumed. Periodic boundary conditions are applied.

The relative density of the structure studied is then

given by

q � t
P

lk

LxLy
; �A11�

where lk are the cell-wall lengths and the sum is carried

over the total number of cell walls in the unit cell. In the

®nite element analysis, each cell edge is modeled by

Timoshenko beam elements (B22 beam element in the

®nite element code ABAQUS); the relative density of the

structure is changed by changing the cell-wall thickness.

In order to get satisfactory results, the beam element

length in the ®nite element model is about 2 and 4 times

of its thickness when the relative density is 22% and

10%, respectively. Fig. 11 plots the predicted in-plane

shear sti�ness as a function of q, which can be accurately

described by the following curve-®tting relationship:

G
Es

� 2:143q3: �A12�

The results presented in Fig. 11 are calculated with

Lx=l � 25 and Lx=l � 10 (i.e., the total number N of cells

in the ®nite element mesh is 250); a mesh sensitivity

study has established that these do not change as N is

increased or decreased. Combining Eq. (A12) with

Eq. (1), one recovers, at small q, Eq. (8e). Note that, in

contrast to the sti� triangular structure with connectivity

of 6, where deformation is dominated by cell wall

stretching, a four-connected triangular structure de-

forms by cell wall bending and hence is much more

compliant.

The in-plane shear moduli of cellular structures with

square cells having connectivity of either 4 or 3 have also

been calculated by the ®nite element method, and are

presented in Fig. 12. The analytical predictions, Eqs.

(A4) and (A8), are included in Fig. 12 for comparison;

excellent agreement between analytical and ®nite el-

ement results is obtained.

Fig. 11. In-plane shear modulus G of square honeycomb with

connectivity of either 3 or 4 plotted as a function of relative

density.

Fig. 12. In-plane shear modulus G of triangular honeycomb

with connectivity of 4 plotted as a function of relative density.
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